Variational and Non-variational Multigrid Algorithms for the Laplace-beltrami Operator
نویسندگان
چکیده
We design and analyze variational and non-variational multigrid algorithms for the Laplace-Beltrami operator on a smooth and closed surface. In both cases, a uniform convergence for the V -cycle algorithm is obtained provided the surface geometry is captured well enough by the coarsest grid. The main argument hinges on a perturbation analysis from an auxiliary variational algorithm defined directly on the smooth surface. In addition, the vanishing mean value constraint is imposed on each level, thereby avoiding singular quadratic forms without adding additional computational cost. Numerical results supporting our analysis are reported. In particular, the algorithms perform well even when applied to surfaces with a large aspect ratio.
منابع مشابه
Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator
We design and analyze variational and non-variational multigrid algorithms for the Laplace-Beltrami operator on a smooth and closed surface. In both cases, a uniform convergence for the V -cycle algorithm is obtained provided the surface geometry is captured well enough by the coarsest grid. The main argument hinges on a perturbation analysis from an auxiliary variational algorithm defined dire...
متن کاملHeat Kernel Laplace-Beltrami Operator on Digital Surfaces
Many problems in image analysis, digital processing and shape optimization can be expressed as variational problems involving the discretization of the Laplace-Beltrami operator. Such discretizations have have been widely studied for meshes or polyhedral surfaces. On digital surfaces, direct applications of classical operators are usually not satisfactory (lack of multigrid convergence, lack of...
متن کاملLaplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملLaplace-Beltrami operator on Digital Curves
Many problems in image analysis, digital processing and shape optimization are expressed as variational problems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The discretization of the laplace-Beltrami operator has been widely stud...
متن کامل